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Introduction

How long will the following code take to run?

p = 0

for i = 1 to 10**6 do

for j = 1 to i do

for k = 1 to j do

p += k

print p

A minute? An hour? How about 31 millenia?
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Competition Application

Obviously, in competitions we are interested in how quickly a
solution runs.

1 second

2 seconds

Different languages differ by small amounts. On average, can
do the same number of operations a second.

Good rule of thumb: If you are doing more than 1 000 000
things a second, you have a problem.

Robert Spencer Big-Oh Notation 3/13



Competition Application

Obviously, in competitions we are interested in how quickly a
solution runs.

1 second

2 seconds

Different languages differ by small amounts. On average, can
do the same number of operations a second.

Good rule of thumb: If you are doing more than 1 000 000
things a second, you have a problem.

Robert Spencer Big-Oh Notation 3/13



Competition Application

Obviously, in competitions we are interested in how quickly a
solution runs.

1 second

2 seconds

Different languages differ by small amounts. On average, can
do the same number of operations a second.

Good rule of thumb: If you are doing more than 1 000 000
things a second, you have a problem.

Robert Spencer Big-Oh Notation 3/13



Rules for Calculating Order of Magnitude

Ignore constants:
O(3n2) = O(n2)

This means that all logarithms are whatever base you want
because they differ by a constant. E.g. binary searches
(complexity O(log2 n)) are the same order as ternary searches
(complexity O(log3 n)).

Take the biggest term:

O(n2 + n log n) = O(n2)

Worst case bound: linear search is O(n) even though it may
only take one step.
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Constant Time

Some operations take “constant time”: they are independant on
the size of any parameter.

Example: accessing values from an array

array[i] += array[3]

Some problems can even be solved in constant time!

Problems with formulae (eg “Find the number of numbers less
than n with their third bit set to 1 in binary expansion”).

Problems that can be hard coded (eg “Find the nth prime
where 1 ≤ n ≤ 1 000 000”).
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Classes of Big-Oh

From this we can work out various “classes” of Big-Oh values, and
reasonable values of n.

Order Reasonable value for N

O(N) 1 000 000
O(N2) 1 000
O(N3) 100

O(N logN) 50 000
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Example 1

What is the complexity of this algorithm?

for i = 1 to n do

for j = 1 to i do

if a[j] > a[j+1] then

swap(a[j], a[j+1])

Answer: O(n2)
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Example 2

What is the complexity of this algorithm?

begin = 1

end = 2

count = 0

while end < n:

if a[begin] == a[end] then

count++

if a[begin] > a[end] then

end++

else

begin++

Answer: O(n)
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Problem Solving with Big-Oh

How can we use Big-Oh to solve problems?

The evaluator has to run in time. Thus we can see what Big-Oh
class the evaluator uses from the constraints. This gives us hints
on the problem solution.

If we are given 1 < n < 50 000, we can reasonably assume a
solution with O(n log n), e.g. sorting

If all constraints are small, e.g. 1 < n,m < 20, then a very
inefficient solution is possible (think O(n2m3)).
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Example 3

What is the complexity of this algorithm?

hi = n

lo = 0

while guess((hi+lo)/2) is false

if (hi+lo)/2 too high

hi = (hi+lo)/2 - 1

else

lo = (hi+lo)/2 + 1

Answer: O(log n)
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Example 4

What is the complexity of this algorithm?

def recurse (left, right)

for i = left to right do

a[i]++

middle = (left+right)/2

if left < middle then

recurse(left, middle)

Answer: O(n)
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Example 5

What is the complexity of this algorithm?

def recurse (left, right)

for i = left to right do

a[i]++

middle = (left+right)/2

if left < middle then

recurse(left, middle)

if middle + 1 < right then

recurse(middle + 1, right);

Answer: O(n log n)
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Well Known Algorithms

Here are the complexities of some well known algorithms:

Algorithm Complexity

Sorting (in general) O(n log n)
Binary Search O(log n)
DFS (visit once only) O(V + E )
BFS (visit once only) O(V + E )
Basic Dijkstra’s O((E + V ) logV )
Kruskal’s and basic Prim’s O(E log E )
Naive substring finding O(nk)
Knuth-Morris-Pratt substring finding O(n + k)
Rabin-Karp substring finding O(n + k)
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